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Evaluaticén of CMIP5 model simulations of
20t century North American climate
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6.

7.

Overview of NOAA CMIP5 Task Force Model Evaluations

Goal is to evaluate CMIP5 20t century historical simulations for North American
climate and related climate processes

Synthesis of work across a range of climate features from basic climate variables to
regional climate features to inter-annual to decadal variability and trends

Work carried out by multiple Task Force Pls that includes new analysis by individual
Pls and leverages from individual papers submitted to the J. Climate special issue

Each analysis uses multiple climate models/ensembles but generally a different set
depending on data availability and downloading/processing effort.

Models are evaluated for their ability to reproduce observed climate features, and
some analyses were able to compare directly to CMIP3 data and previous studies

Presentation today can only show a sampling of the breadth/depth of the analyses

More details are in two-part paper submitted to J. Climate:

Sheffield, J., 2012a: North American Climate in CMIP5 Experiments. Part I: Evaluation of 20th Century

Continental and Regional Climatology. J. Climate, submitted.

Sheffield, J., 2012b: North American Climate in CMIP5 Experiments: Part Il: Evaluation of 20th Century

Intra-Seasonal to Decadal Variability, J. Climate, submitted.



Range of features relevant to
N. American climate and its impacts

Continental climate
temperature, land/atmosphere
water budgets, SSTs, biophysical
indicators, persistent dry/wet spells)
Regional climate (east coast winter
storms, northeast precipitation,
western water, North American
monsoon, Great Plains low level jet/
drought, Arctic sea ice, south/
southeastern extremes)

East Pacific and Atlantic tropical
cyclones

Intra-seasonal variability (Eastern
Pacific, Midsummer drought Central
Am.)

Inter-annual to decadal variability
and trends (ENSO plus
teleconnections, warm/cold event
asymmetry, AMO, PDO, warming
hole, trends in precipitation, temp).

(precipitation,
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climate and the uncertainties in long-term predictions|
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Seasonal Air Temperature

CMIP5 Historical DJF Sfc‘. Temp. Clim. (1979-2005)
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Surface air
temperature
climatology for (left)
December-February
and (right) June-
August (1979-2005).
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* The multi-model ensemble (MME) reproduces reasonably well the spatial distribution
of temperature and is generally within 1°C of observations.
* MME mean does well at representing regional features such as the southerly regions
with mean summer temperatures >30°C, the extension of temperatures >10°C into

Canadian prairies and the wintertime 0°C contour.

Baird Langenbrunner, Joyce E. Meyerson, J. David Neelin, UCLA



Seasonal Precipitation

Precipitation climatology for December-February and June-
August (1979-2005). CMAP observations (top); CMIP5
(bottom)

(a) CMAP DJF Prec 1979-2005
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Comparison of individual models to observations using the 3
mm day! contour as an index of the major precipitation
features, Shading shows the regions where CMAP exceeds 3
mm day?.
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(d)_ CMIP5 JJA 3 mm/day Precip. Clim. (1979-2005)
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* The multi-model ensemble does reasonably well in representing the main features of
precipitation over North America and the adjoining seas.

* There is large spread in individual model performance regionally however (e.g. high in
continental interior; too much spread in the location of East Coast storm tracks)

* For some regions, a few outlier models provide much of the bias in the multi-model mean.

Baird Langenbrunner, Joyce E. Meyerson, J. David Neelin, UCLA



Land — Atmosphere Water Budgets

Mean seasonal cycle (1971-2000) of North American regional land water
budget components for 12 CMIP5 models
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* The models have a reasonable seasonal cycle of terrestrial
hydrology but the regional biases in precipitation filter down

into biases in ET, runoff and snow accumulation.

* E.g. models overestimate precipitation in western regions,
overestimate ET in the cooler months, underestimate runoff

(and relative to model precipitation)

Justin Sheffield, Princeton;
Anji Seth, UConn

Vertically integrated moisture transport
(vectors) and its divergence (contours) for
1981-2000
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* Models capture main features of atmospheric moisture transport, with convergence off the
east coast and divergence in the central plains and most of the west. However, they do not
simulate the strong convergence over the Rockies and Mexican Plateau.



Biophysical Indicators - Temperature
Observations CMIP5 CMIP5 - Observations
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* The models do reasonably well at capturing the spatial distribution of seasonal temperature variations.

* The models’ growing season is generally too long overall with the largest positive biases (up 40-50 days) in
the central US and coastal regions, but is too short in western Canada.

* The frequency of summer days is too low in western regions

* The frequency of frost days is too high in the western mountains for most models.

Justin Sheffield, Princeton



Frequency of Persistent Wet and Dry Anomalies

frequency of occurrence of extreme events (SPIB) frequency of occurrence of exireme events (SM)
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* The models show quite different skill in simulating the frequency of persistent anomalies.
* Some models capture the east-west contrast in precipitation events — they also have a realistic
precipitation climatology.
« Skill for precipitation frequencies does not imply skill for soil moisture. Models need realistic land surface
model as well as being able to simulate large-scale circulation anomalies
Lindsey Long, Kingste Mo, CPC



Western N. Atlantic Winter Cyclones

Frequency of cooI season cyclones Cyclone Intensity Distribution
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* The multi-model mean captures the
cool season cyclone density over the
western North Atlantic

* But under predicts the magnitude by
10-20%, which can be attributed partly
to model resolution.

* All models tend to under predict the
frequency of strong cyclones.

Brian Colle and Kelly Lombardo, SUNY



Northeast Cool

Season Precipitation
CMAP Obs

CPC Obs
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* The maximum precipitation towards the
Northeast US coast associated with the
storm track is realistically simulated by
the models, but large spread

e But an over prediction over northern
New England and southeast Canada

* Many models underestimate the
frequency of heavy precipitation events

Brian Colle and Kelly Lombardo, SUNY

Southern Tier States Precipitation
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* Over the southern US, most models
underestimate heavy rainfall over the
southern US, although a few models, in
particular HadGEM2, do reasonably well.
* (Not shown) models tend to
underestimate the frequency of the
hottest temperature maximums in
summer and overestimate the frequency
of cooler temperature maximumes.

Rong Fu, UTexas Austin



Warm season rainfall in the North
American Monsoon

A. Seth, University of Connecticut

* The North American Monsoon (NAM) brings rainfall to
southern Mexico in May, expanding northward to the
Southwest US by late June or early July.

* Monsoon rainfall accounts for roughly 50-70% of the
annual totals in these regions

* The North American monsoon is generally later and

underestimated in terms of precipitation for the multi-
model mean.

CMAP 1979-2005
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Small (0 month) Phase Errors: Moderate (1 month) Phase Large (>1 month) Phase Errors:
1979-2005 Errors: 1979-2005 1979-2005
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Results: 3
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* CMIP5 shows better onset compared to
CMIP3 in the core NAM region.
e CMIP5 models show difficulty ending the
monsoon as was the case for CMIP3.
 Some CMIP5 models show larger positive

. . . Month of the year
bias in monsoon monthly maximum
AR4 results courtesy of Lee Byerle, Lt. Col.,

compared to CMIP3. Maxwell AFB Montgomery, AL,



Averaged summer 925hPa wind during 1971-2000.

Shading is > 3m/s

a) NCEP—NCAR Reanalysis

US Great Plains Low Level Jet

Long-term mean (1971-2000) monthly meridional wind

averaged over 95°-100°W
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* LLJ is an important source of warm season moisture to central US: shaped mainly by orography

* Variability in the LLJ is linked to drought occurrence

* The five models evaluated capture its main features, with the accuracy of the northerly extension and

intensity related to the model resolution

Steve Hu, U. Nebraska



Extent 10° km?

Extent 10% km?

Arctic Sea Ice Extent Andrew Barrett, Julienne C Stroeve , NSIDC

CMIP5 1979 to 2005 Extent
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* Models tend to under predict sea ice extent in September and most fall outside of the
range of observations in March.

* Related to biases in ice thickness (as seen from ICESat comparisons)

* Most models underestimate the observed rate of decline in September sea ice extent for
1979-2005. The multi-model mean trend is not statistically different from zero.



Tropical Disturbances, Storms and Cyclones

Tracks of tropical cyclone-like storms in the CMIP5 historical

Storm track density (top) and mean strength (bottom) runs in the period 1950-2005
for ERA Interim and seven CMIP5 models T T ——
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* When all tropical disturbances and storms are considered (left), the set of models examined does a
reasonable job of depicting the density and location of activity but with much scatter

* When only tropical cyclones are analyzed (right), all models severely under predict the number of TCs,
especially in the peak hurricane season

* These biases have implications for simulated precipitation over the southeastern US which can
receive up to 20% of annual and 30% of warm season precipitation from TCs (Kam et al., 2012) and
contribute significantly to heavy precipitation (Knight and Davis, 2009).

Yolande Serra, UA; Suzana Camargo, LDEO



High-Resolution Modeling of Tropical Cyclones

Observed (upper panel) and C180HIRAM simulated

(lower panel) hurricane tracks for the N. Atlantic and Upper panel: observed and C180HIRAM simulated annual
E. Pacific for 1981-2008 hurricane count statistics. Lower panels: Observed and
OBS (1981-2009) model simulated seasonal cycle (number of hurricanes per

50

month) for the N. Atlantic and E. Pacific.
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* Experiments with the higher resolution GFDL model, indicate that 25-50km resolution
models can do a good job at replicating TC frequency and variability
e although they still cannot simulate the most intense storms.

Ming Zhao , GFDL



Eastern North Pacific Intraseasonal Variability

Intraseasonal variability (ISV) over the eastern north Pacific (ENP) exerts pronounced influences
on regional weather and climate

a) CEOF1 Amplitude — TRMM

b) CEOF1 Phase — TRMM
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leading complex EOF (CEOF1) mode based on 30-90-day
band-pass filtered TRMM rainfall during boreal summer
(June-September) over the eastern Pacific.
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X-axis: Pattern correlation coefficients of the CEOF1 mode
between TRMM observations and CMIP5 GCM simulations.
Y-axis: Relative amplitudes of CEOF1 in model simulations to

their observed counterparts.

* Only seven out of the 16 models capture the spatial pattern of the leading ENP ISV mode
* But several of these exhibit biases in simulating ISV amplitude.
* It is indicated that model fidelity in representing ENP ISV is closely associated with ability to
simulate a realistic summer mean low-level circulation. The presence of westerly or weak mean
easterly winds over the ENP could be conducive for more realistic simulations of the ISV.

Jiang X., E. Maloney, F. Li, and D. Waliser




The Midsummer Drought in Central America

CMIP5 MMM and observed summertime (June-September) CMIP5 MMM and observed and MSD strength (mm/day)
precipitation (mm/day)
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* The rainy season in Central America and southern Mexico spans roughly May through October.

* For most of the region, the precipitation climatology features maxima in June and September and a
period of reduced rainfall during July-August known as the midsummer drought (MSD).

* The MSD is regular enough to be known colloquially and plays an important role in farming practices.

* CMIP5 models reasonably well simulate the observed historical MSD, both in spatial structure and
amplitude.

Kris Karnauskas, WHOI; Richard Seager, LDEO



ENSO Frequency/Amplitude and Teleconnections

ENSO and mean tropical Pacific metrics for pre-industrial « The CMIP5 multi-model ensemble mean reproduces
control simulations - CMIP3 (blue) and CMIPS (red) the frequency and mean amplitude of ENSO events
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Comparison of ENSO-related SAT and precipitation

. Wintertime composites of ENSO-related SAT and precipitation
composite patterns between CMIP5 models and

anomalies in observations and the CMIP5 ensemble.
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* CMIP5 surface air temperature and precipitation ENSO composites show a wide range in model fidelity to
the observed relationships, with the largest discrepancies occurring during winter and spring.
* Again the situation has not changed since CMIP3 (Joseph and Nigam, 2006; Mo, 2010)



Two Types of ENSO in CMIP5 Models and Their Different Impacts on US Winter Climate
(PI: Jin-Yi Yu; University of California-lrvine; NOAA MAPP-CMIP5 Task Force)
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ENSO Warm/Cold Events Asymmetry

The sum of the composite SST anomalies between the two Standard deviation (upper) and skewness (bottom) of
phases of ENSO the interannual variability in Nifio-3 SST.
ENSO residuals (warm - cold SST anomalies) from CMIPS. piControl Statistics estimated for Nino3 SSTA time series
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Tao Zhang and De-Zheng * This bias has implications for simulating tropical decadal variability

Sun, U Colorado



Pacific Decadal Oscillation (PDO): Variability and Teleconnections

a)
CMIP5 Ensemble PDO SST pattern
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PDO SST patterns in observations and CMIP5 models.
Linear regression of SST upon the PDO index in (a)
observations and (b) the CMIP5 ensemble, and (c) the
CMIP5 minus observed PDO regression.
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Observed SAT regression
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December-February PDO SAT and precipitation regression
patterns over North America

* As in the CMIP3 models, the CMIP5 models reproduce the basic PDO horseshoe SST pattern.
The most notable difference is the westward shift of the North Pacific center of action in

models with respect to observations.

* Overall, the CMIP5 models perform well in capturing the PDO influence on North American
temperature and on West Coast precipitation in winter.

* The largest deficiencies appear to lie in the representation of the wintertime precipitation

signature over the eastern North America.

Nat Johnson, Shang-Ping Xie, U. Hawaii



Atlantic Multidecadal Oscillation: Regressions of the JJASON AMO on vertical wind shear.
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The AMO index defined as the detrended North Atlantic SST
during the Atlantic hurricane season of June to November
(JJASON) from the equator to 60°N, 75°W-5°W with the 11-year * About 10/20 models can reprOduce
running mean this

wind shear favoring (disfavoring)
hurricane activity.

 Models show a large spread of uncertainty, but better than CMIP3 simulations.
* All models display a warming in the last two decades.

* Models underestimate the cooling (1900-25) and the subsequent warming (1925-40).
Chunzai Wang, NOAA AOML



Southeastern US Warming Hole

Summer and winter temperature trend (1930-2004),

unit: degree C/decade
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* The observed warming hole is replicated only by some models indicating that it is driven partly
by decadal variability, rather than a forced climate signal or land surface feedback.
* The observed warming hole in the eastern US is closely associated with the multi-decadal
oscillation in North Atlantic (65-70 years cycle; Kumar et al., 2012).

Zaitao Pan, Saint Louis University; Zanjiv Kumar, COLA



Trends in Diurnal Temperature Range (DTR)

Trend of Daily Temperature Range (DTR) during 1951-2000

. DTR trend CRU Summer °Cldecade DTR trend Model Summer °Cldecade
Comparison of observed (left) and 7 : 75N :

model simulated linear trends in
daily temperature range (Tmax -

Tmin) during 1951-2000 period.
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* In summer, the models capture a cooling trend in central U.S., roughly corresponding to
the WH region, although the position is shifted to the west and the magnitude is lower.
* In winter the models largely reproduce the broad decrease in DTR as observed, but again
with lower magnitude.
* They fail to capture the increasing trends in high latitudes Zaitao Pan, Saint Louis University
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Trends in Precipitation 1951-2004
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* Precipitation has generally increased over North America in the last half of the 20t century.

* The MME fails to reproduce observed increases, but rather shows a robust drying signal in the
southern US and Mexico.

* The failure is in part because of high uncertainty among CMIP5 models in the sign and magnitude of
regional precipitation changes.

* The drying signal in the models is symptomatic of CMIP3 models also (IPCC, 2007) and is likely driven

by the inadequate connection between increasing precipitation and global SST warming
Zanjiv Kumar, COLA



CMIP5 versus CMIP3 for similar models
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CMIP3 versus CMIP5: Have the models improved?

 Overall, the performance of the CMIP5 models in representing observed climate features
has not improved dramatically

* Some variables like SST/Tas were already reproduced well by CMIP3

* PDO variability remains reasonable in CMIP5 models; AMO variability appears to have
improved slightly with CMIP5

* CMIP5/CMIP3 can capture the frequency and mean amplitude of ENSO events but
seasonal timing is still a problem for CMIP5.

* Weaker models are now comparable to stronger models for EP/CP ENSO

* There are some models that have improved for certain features (e.g. the timing of the
NAM, the maximum precipitation over the Pacific Northwest in winter, the WHWP in the
warm part of the year, spatial variability of precipitation)

* But others that have become worse (e.g. the summer minus winter difference in surface

air temperature, or the cold tongue along the equatorial Pacific SST in winter, higher NAM
precipitation bias).



Conclusions

 Overall, the models do well in capturing the broad scale climate of N. America and some
regional features

* Resolution can explain many of the biases (e.g. GPLLJ, western North Atlantic
wintertime cyclone frequency, orographic precipitation features, surface hydrology,
tropical cyclones, ...)

* Regional climate features provide a difficult test of coarse resolution models

* Model performance for basic climate variables has not improved dramatically since
CMIP3 (But... we have only analyzed a handful of models - mostly for equivalent CMIP3/
CMIP5 models).

* There are several outstanding issues: e.g. too much precipitation westward of the
100°W in summer; ENSO features and teleconnections; drying signal in the south;
underestimation of extreme temperatures and heavy rainfall.

* The results have implications for the robustness of future projections of climate and its
associated impacts.



