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APPENDIX 2 THE IMPACT DEVELOPMENT TEAM
The IMPACT model has had many contributors over the years and remains in active development today.
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Motivation: Climate Change is likely to Adversely Affect
Water Supply and Agricultural Water Use

» Climate change is expected to alter hydrological regimes
» Affecting freshwater availability — quantity and timing
» Crop ET requirements are likely to increase under warming

» Existing assessments focus on natural processes, with less
attention being paid to the human dimension

» Past hydroclimatic experience is no longer a good guide for
the future
* Need timely assessments to aid decision-making

* Especially for irreversible investments with long-term
consequences in climate-sensitive sectors



Motivation: Agriculture — the Single Largest Water User
Globally in the Foreseeable Future

» lIrrigation is key for securing future food supply
* Accounting for less than 20% of global cropland
e Contributing ~40% of global cereal production
» Irrigation is the largest water user, accounting for
 70% global water withdrawals
* 90% global water consumption
» Usually seen as the major driver of water scarcity

» But improvement of agricultural water use efficiency is a
slow and difficult process



Motivation: Food Security Challenges are Unprecedented

» Population growth
50 percent more people between 2000 and 2050

* Almost all growth in developing countries—
particularly Africa

» Income growth in developing countries

 More demand for high valued food (meat, fish, fruits,
vegetables)

» Climate change — a threat multiplier

 Reduced productivity of existing varieties, cropping
systems



Part I:
Linked Modeling System for Global Water & Food
Projections




Data Flow and Modeling Strategy (IMPACT-Water)

Climate forcing

Water Demand

Domestic
Industrial
Irrigation
Livestock
Environment

IGHM

IMPACT Global
Hydrological Model

Effective rainfall
Reference ET
Internal renewable water

WSM

IMPACT Water
Simulation Model

IMPACT

Food demand, supply and trade projection

Land cover, soil,
terrain

Water Supply
Non-irrigation supply
Irrigation supply
(+ Effective Rainfall)

Crop area, yields, production, trade, demand and prices and livestock production,
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IMPACT Model’s Spatial Disaggregation

115 Geopolitical Regions X 126 Water Basins




IMPACT Commodities
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Beef
Cassavaet al.
Chickpeas
Cotton

Eggs
Groundnut Meal
GroundnutQils
Groundnuts
Maize

Milk

Millet

Other Grains
Palm

Palm Kernel
Palm Kernel Meal
Palm Kernel Qil
Pigeonpeas
Pork

Potato

Poultry
Rapeseed
Rapeseed Meal
Rapeseed Qil
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Rice

Sheep and Goats
Sorghum

Soybean Meal
Soybean Oils
Soybeans

Sugar

Sugar beets
Sugarcane
Sunflower
Sunflower Meal
Sunflower Qil

Sweet Potatoes and Yams
Sweeteners
Temperate Fruits
Total Other Meals
Total Other Qils
Total Other Oilseeds
Tropical and Sub-Tropical Fruits
Vegetables

Wheat

Other Crops




Global Hydrological Model

Representation of Hydrology & Water Uses
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IGHM Main Structure and Major Assumption

» Spatial Resolution: 0.5 latitude x 0.5" longitude grid cells covering the
entire global land surface except the Antarctic

» Temporal Resolution: Monthly simulation over multi-decadal period

Potential Evapotranspiration - Priestley-Taylor equation

PET =«
A

4 = -(1- 1/b
Runoff Generation c=c,[1-(1-f(c))""]

» Variable soil moisture holding
capacity within a grid cell

»Linear reservoir representing
groundwater modulation of base flow

Soil water-holding capacity ¢

A 4

0 & An

Areafraction fi¢c)
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IGHM Model Runoff Calibration and Validation for
Botswana Catchment of the Limpopo River Basin

Runoff
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Z(Qz -q,) Nash-Sutcliffe model efficiency coefficient is 0.913 in the
NSE=1- W calibration period (1971-85) and is 0.906 in the validation period
Z v (1986-2000).
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IWSM Data Flow and Policy Scenario Framework

Hydroclimatic Variables

Precipitation

Potential Evapotranspiration
Runoff

Groundwater recharge

Water Management &
Infrastructure Investment

Irrigated area

Effective irrigation efficiency
Reservoir storage

Surface water withdraw capacity
Groundwater pumping capacity

Agricultural Policy

e Agricultural research &
extension investment

e Rural infrastructural investment

Demographic & Economic Factors

Population growth
GDP growth

Water Policy

Sector-wise allocation priority

Minimum environmental flow
Water price

N
\\\ e Crop and livestock productivity
N
N
. . N N
Imigation M. | Food Production,
Water 3  Demand, Trade
Supply & Prices

Policy
Implications
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Applying DSSAT-simulated Crop Yield Impacts of

Climate Change in IMPACT Model

DSSAT Modeled Crops

*Groundnut
*Maize
*Rice
*Soybean
*Wheat

Applying biophysical

effects of climate change
*Direct mapping of DSSAT-
modeled effectsto the
IMPACT commodity of the
same name

IMPACT Commaodities

*Groundnut
*Maize
*Rice
*Soybean
*Wheat

DSSAT-modeled climate effects mapped according to shared plant physiology (metabolic pathways: C3 and C4) for main

IMPACT commodities®

C4 metabolic pathway:
DSSAT Modeled Crops

Applying biophysical

effects of climate change
«Direct mapping DSSAT-
modeled effectsof maize
to sugarcane

IMPACT Commaodities

eSugarcane

C3 metabolic pathway:
DSSAT Modeled Crops
*Groundnut
*Rice
*Soybean
*Wheat

Applying biophysical
effects of climate change
*Map the average
biophysical effectsof thed
DSSAT-modeledcropsto
the following IMPACT
commodities

IMPACT Commodities

*Cassava
«Cotton
*Fruits
*Qil Crops

«Sweet Potatoand Yams
*Sugar beet

*Vegetable

The following 3 figures detail the mapping of DSSAT-modeled effects on dryland crops better adapted to drier and warmer climates

Dryland C3 Legumes:
DSSAT Modeled Crops

*Groundnuts

Dryland C4 Cereals:
DSSAT Modeled Crops

Applying biophysical

effects of climate change

*Map half of the negative
effects

*Directlymap total positive
effects

Applying biophysical

effects of climate change

*Map half of the negative
effects

*Directlymap total positive
effects

Dryland C3 Legumes:
IMPACT Commodities
«Chickpea
*Pigeonpea

Dryland C4 Cereals:
IMPACT Commodities

*Sorhum
«Millet
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IMPACT — Partial Equilibrium Agricultural Sector Model

Model Inputs and Scenario Definitions)

(  Urban growth &
changes in food habits
\_(demand elasticities) /
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crop prices

Supply, demand, and
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Part IlI:
Climate Change and Socioeconomic Scenarios

Source: Nelson et al. (2010); Zhu and Ringler (2011)
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Average temperatures could increase substantially
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Change in average annual precipitation, 2000-2050, CSIRO
GCM, A1B (mm)

Source: Nelson et al. (2010)



Change in average annual precipitation, 2000-2050,
MIROC GCM, A1B (mm)

Source: Nelson et al. (2010)



Socioeconomic Scenarios -
Plausible futures for population and GDP growth

» Optimistic
* High GDP and low population growth

»Baseline
* Medium GDP and medium population growth

» Pessimistic
* Low GDP and high population growth



Global and regional GDP per-capita growth
scenarios

Global growth rate assumptions, annual average 2010-2050 (%)

Pessimistic Baseline Optimistic
Population 1.04 0.70 0.35
GDP 1.91 3.21 3.58

0.86 2.49 3.22

African GDP per capita growth rate assumptions,
annual average 2010-2050 (%)

Pessimistic Baseline Optimistic
Central Africa 2.42 3.92 4.85
Western Africa 2.04 3.63 4.03
Eastern Africa 2.72 418 4.97
Northern Africa 1.78 2.60 3.49
Southern Africa 0.55 2.98 3.44




Part lll:
Water and Food Security Implications of Global
Climatic and Socioeconomic Changes
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Internal Renewal Water Resources (IRW) under Climate
Normal and Climate Change: 2050

45000 16000
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% of World Total IRW
Climate Normal

Region Grouping
ESAP - East -South Asia and Pacific

WESAP CWANA - Central-West Asia and North Africa
HCWANA LAC - Latin America and Caribbean

mLAC SSA - Sub-Saharan Africa

mSSA

NAE NAE -  North America and Europe

Source: Authors’ calculation with IGHM Global Hydrological Model (2011)



Irrigation Water Consumption under Climate Normal

and Climate Change: 2010-2050
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Source: Authors’ calculation with IWSM Global Water Simulation Model (2011)
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Irrigation Water Supply Reliability (IWSR) under Climate
Normal and Climate Change: 2010 & 2050
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Source: Authors’ calculation with IGHM Global Hydrological Model (2011)



Yield Effects, Irrigated Rice, CSIRO A1B
(% change 2000 climate to 2050 climate)
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Yield Effects, Rainfed Maize, CSIRO A1B
(% change 2000 climate to 2050 climate)
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Yield Effects, Rainfed Maize, MIROC A1B
(% change 2000 climate to 2050 climate)

2000 old area lost
loss > 25% of baseline P\ . 1
loss 5-25% X
change within 5%
gain 5-25%

gain > 25%

2050 new area gained



Income and population growth drive prices higher
(price increase (%), 2010 — 2050, Baseline economy
and demography)
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Source: Nelson et al. (2010)



Climate change adds to price increases
(price increase (%), 2010 — 20560, Baseline economy and

demography)
100 - Mean effect from four climate
scenarios
90 - /
80 -
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60 - \ 4
50 -
40
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0 _
Maize, Rice, Wheat,
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Source: Nelson et al. (2010)



Climate change scenario effects differ

(price increase (%), 2010 — 2050, Baseline economy and
demography)

130
Minimum and maximum effect from
/ four climate scenarios ‘

110 -

90 -

70 -

v

30 -

-10 Maize, Rice, Wheat,
baseline baseline baseline

[

Source: Nelson et al. (2010)



Economy and population scenarios alter

price outcomes
(price increase (%), 2010 — 2050, Changing economy and demography)
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Developed Country, Change in Net Exports of
Cereals, 2010-2050 (million mt)

(million mt)

-15

-35

-55

-75

-95

-115

-135

-155

AlB B1 AlB Bl

Baseline

Perf Perf Perf

CSIRO | CSIRO | MIROC|MIROC| Mit | CSIRO | CSIRO | MIROC|MIROC| Mit | CSIRO | CSIRO | MIROC MIROC, Mit
1 AlB B1 AlB Bl AlB B1

AlB

With perfect mitigation, DC net cereal exports
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With climate change, DC net cereal
exports grow less or decline.
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Conclusions

» Agricultural water use is considerably affected by climate
change, but the impacts will be region-specific and
hidden beneath natural climate variability

» Climate change can affect food production, trade, prices,
and consumption, with broad socioeconomic
implications

» Sustainable economic growth is a powerful form of
climate change adaptation

» Adaptations for agriculture and water management will
benefit from progress in climate modeling and improved
guantification of climate projection uncertainties



