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Pacific Northwest

Motivation and development of iESMs s s
» Opportunities: Build unified framework for water/energy/climate

» Possible solution:  Unite IA and climate in single framework

» Potential upsides: Quick “look-see”, inclusion of feedbacks, and
stronger |A foundations

» Trial of IESM: Land-use and land-cover change (LULCC)

» Results: Simulation spread from diverse LULCC forcing
under same RCP

» Future roll-out: Next steps in iESM development



Three major objectives of IESM project

» Create a first generation integrated Earth System Model (iESM) with
both the human components of an IAM and a physical ESM

» Develop linkages within the iIESM and apply the model to improve
our knowledge of coupled physical, ecological, and human system

» Add hydrology and water demand, allocation, and availability to IA.




How would IESM change current paradigm?

In the present world, emissions mitigation analysis is undertaken under
the assumption that the climate is not changing.

Climate impacts analysis is undertaken with the assumption that
no resources are being diverted to address climate change.

Changes in response of the coupled climate-energy-land model
are significantly different than in the un-coupled models.

The development of an iESM means that fully consistent analysis of
potential future climate change, emissions mitigation options, and
impacts and adaptation options will be possible.




IESM schematic
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IESM links 4 models: GCAM, GLM, CLM, & CCSM
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IESM multi-phase coupling strategy
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GCAMRCP 4.5
Characteristics

» Regional Details:
m Regional Scope: Global
m Number of Sub-Regions: 14

Time Step: 15 years

Time Frame: 1990 to 2095

Model Type: Dynamic Recursive
Equilibrium Type: Market Equilibrium
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Underlying Computing Framework: Object Oriented (C++)



Schematic and data flow of GCAM
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Role of biofuels in GCAM’s energy markets
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Action of the markets on LULCC
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IESM experiment O:
Bioenergy scenarios with one-way coupling

» Information flow: |A to downscaling to Earth System Model

» Sanity check: Does the one-way pass of information replicate
the original RCP4.5 simulation done in CMIP5?

» Policy sensitivity: For different policy but same concentration pathway,
does the evolution of the climate system differ?

» Experiment O: Contrast two pathways:
» RCP4.5 — carbon price on all carbon (UCT)
» RCP4.5 — carbon price ONLY on fossil carbon (FFICT)
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Experiment 0 work flow
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RCP 4.5 and a version without terrestrial mitigation
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Land cover change in the RCP4.5 FFICT scenario
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In many regions, biofuels displace up to 50% of forests in latter 215t C.



Land cover scenario effects on global temperature
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Temperature changes by 0.5°C despite same LLGHGs and aerosols.



Link between albedo and temperature

Albedo

a) Offline Surface Albedo

b) Coupled Surface Albedo
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Linkage of water vapor and greenhouse effect

Water Vapor

Greenhouse Effect
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» Water vapor is lower in FFICT run.
» GHG effect is reduced by 1.5 W/mZ.




Major findings of experiment 0

The two scenarios have the same radiative forcing from GHGs.

Yet they are substantially different in the evolution of the climate:
the equivalent of 1.5 W/m?, or about 0.5°C global annual average.

We can replicate RCP 4.5 with a one way pass of information.

But it is also true that the actual policy chosen matters —

in this case the very large land-use change associated with FFICT.

Radiative forcing by GHGs is not a complete metric for
evaluating the evolution of the climate system
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Experiment 1:
Simplest possible feedback from CESM to GCAM

» Send maps of carbon density, by plant type, from CLM to GCAM.
» GCAM updates its carbon densities based on changes from CLM.
» GCAM recreates RCP, with new LULCC path, based on carbon densities.

IGBP soil carbon CLM4-Vertical

T
180° 90°W 90°E 180 180° 90°W

.

kg C m?
N D R |

1 2 5 10 15 20 30 50 100 1 2 5 10 15 20 30 50 100

.
kg C m?




Translation of GCAM/GLM response into CLM vegetation types

GON -

30N =

30S =

Control (2020 to 2034)

w91 Trees

180

150W 120W

60N o 5

30N -

150E

90E

120E

180

L
180 150W

120W

L
90E 120E 150E

GON -

30N -

G0N -

GON -

305 -

180 150W

60N -

30N -

305 -

180

150W 120W

L

0w

50W 30w 0 30E 60E S0E 120E 150E

0.01 0.1

Percent cover

[ T T
1 3 &5 10 30 50 70 90

T
180 150W

| —
120W

60W 30w 0

.t rfirryer——r————tr

30E 60E S0E 120E 150E

-2

I [ l
-0.5-0.05-0.010.
Percent cove

010.05 0.5 2
r change



Translation of GCAM/GLM coupling response to CLM harvest

] Harvest
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Summary of coupling influence on CLM forcing:
» Tree cover higher

Grass cover higher

Crop cover lower

Pattern reversed for Sahel, India, and forests in Asia
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Regional modifications to harvest rate



CLM/CESM response to Expt 1

(2020-2034)
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DWT_CLOSS

CLM/CESM response to Expt 1 coupling
(2020-2034)
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IESM coupling status
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First generation iESM
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Status:
» iESM code is written.

» Internal consistency of c-cycle under development.

» iESM code is running at JGCRI, ORNL, and NERSC.




IESM coupling:
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Next steps for the integrated Earth System Model

» Proof-of-concept experiments of extensibility to other IAMs
that conform to the RCP “handshake” protocol.

» Friendly-use release to CESM Societal Dimensions Working Group and
global climate community.

» Extensions underway to handle forcings besides LULCC:
full RCP complement of LLGHGSs, aerosols, etc.
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Opportunities afforded by IESM

» Immediate tests of climate impacts for future scenarios.
» Tool to enable “no regrets” scenario/path development.

» Advances in internally consistent treatment of
water, energy, and climate in mitigation pathways.

» Quantification of impacts of feedbacks and interactions
that are yet to be treated under current protocols and
yet could be significant on mitigation timescales.



