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NOAA/ GFDL Climate Modeling
IPCC AR5
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NOAA/ GFDL Climate I\/Iodelmg

Contributions to CMIP5 and IPCC AR5

Advancing the understanding of the climate and Earth System -
the processes, mechanisms, and interactions

=» reliable global- to regional-scale projections and predictions

1. Role of pollutant particulates and other short-lived species
compared to long-lived gases such as carbon dioxide

2. Carbon and other biogeochemical cycles, uptake of carbon by
land and oceans, and their roles in climate change

3. High-resolution, atmosphere-ocean models for seasonal- to-
centennial variability, predictability and regional change

4. High-resolution models for understanding “weather extremes” in
climate (e.g. hurricanes, heat waves and droughts).
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GFDL “4 Streams”

ESM — closes carbon cycle by adding ocean
and land carbon components

— ESM2M — MOM (depth vert coor) based ocean
— ESM2G — GOLD (layer vert coor) based ocean

CM3 — New aerosol-cloud interactions, HI-TOP
and atmospheric chemistry

Decadal Prediction — used CM2.1 (AR4 model)
High resolution atm-only: 50 and 25km grids



GFDL 4 “Streams” Data

All data from at least one ensemble member
are available.

Other ensemble members available in future

LGM run being set up using ESMs now. At least
1 year away from being available.

Had to reprocess a few variables to fix
problems — fco2...unfortunately




CMIP5/ IPCC AR5 Accomplishments

m Total Model Years | CMIP5 Data (TB)

Physical Climate 6800 15.3
Earth System 18,500 119.2
High-resolution 500 22.3
Decadal Prediction 5000 7.3
TOTAL 30,800 164.1

_ Publications More than the entire

world’s model data archive

FY11 ~70
for CMIP3/ IPCC AR4
FY12 39 to date (2007)
(+55 submitted)
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GFDL Issues

- the process of CMORizing the vbls, QC, and etc was
very time consuming/labor intensive

— Size of task way underestimated at start of process
Volume of runs and variables requested are very large

In-house “curator” software either untested or missing
parts - written while data publishing occurring

Variable list kept changing well into process

METAFOR questionnaire
— Hard to figure out (bindings!)

— Questions did not “fit” our models => models not well
documented or misleading or both in questionnaire

— Not clear if METAFOR is of any use to anybody



Climate Change

New NOAA/ GFDL

Climate Model; AM3/ CM3
{Donner et al., 2011; Bollasina et al., 2011}

Greenhouse gases versus Aerosols




Coupled Chemistry-Aerosol-Climate model
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Evaluation of AM3 chemistry-climate model with

published measurements

Free troposphere (1.7 km) Low-elevation sites, classified as rural
Mt. Abu (24.6N, 72.7E) Anantapur (14.6N, 77.7E) Gadanki (13.5N, 79.2E)
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Model ~10 ppb high These 2 sites fall in same model grid cell;
in free troposphere April__june illustrates sub-grid variability

(consistently occurs
throughout N mid-latitudes)

Model captures general features of observed seasonal O,
cycle: summer minimum, broad winter-spring maximum
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Evaluate aerosol properties simulated with CM3 for IPCC-AR5

Aerosol Optical Depth

. i CM2.1 - AERONET
(a) (b) Relative Difference, AERONET
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A drying trend over central-northern India during
the second half of the 20t century

« JJAS rainfall (mm day 50 years™)
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Attribution of the recent trend of the S. Asian summer

monsoon using CM3 historical simulations
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10-Year Running Seasonal North Atlantic TS Frequency
Downscaled from GFDL-CM3 (TS per Year)

Aerosols key for NA TS projections
(“Cleaning” out aerosols =» More storms)
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Advancing with enhanced spatial
resolution:

" Tropical storm frequency
= Heat waves

= Intercontinental transport of pollutants
(Global climate and air quality)

Courtesy: |. Held, S. J.
Lin, M. Lin, N-C. Lau
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Set of AR5 Time-slice simulations at 50and 25km complete

Time-slice = atmosphere/land model running over prescribed
ocean temperatures and sea ice distribution

3 “AMIP” simulations with 50km model and 2 at 25 km with
observed boundary conditions for 1979-2008

Multiple future simulations with both 50 and 25km models
for early period (2025-2035) for RCP 4.5
for late period (2085-2095) for RCP 8.5

using projected ocean and ice states from CM3 and ESM —M

Also have multiple C180 simulations using boundary conditions projected by
various AR4 models for A1B
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25 km CMIPS N. Atlantic tropical cyclone frequencies

North Atlantic
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Midwest Heat Waves

Lau et al. (J.
Climate, 2012)

Model Observations
Surface Temperature
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Large-scale circulation context of Midwest Heat waves well simulated

500mb Geopotential Height

Model Observations

-40 =30 -20 -10 0 10 20 30 40

LR W

50N 4 o i S N
AL R AN
....... 2 P4
....... 1A
el IS e s RN . T 4 ok aia A A e e oa| A 4+ 1
40N-.,. IR U
.........
..... a4 .
- P A A U P S R GGG
N N S o IS WA D ST S I SNSRI N S ot L e R = S P2
30N-v ................ v v«
................
T v . p p \
120W 100W 80w 120W 100w 80w

Geophysical Fluid Dy -




/ Model Projections
IRatio: 2041-2070 vs 1971-2000

Duration # Events/yr
Midwest 1.5 2.7
Northern Plains 1.3 3.8
SE Canada 1.2 2.5
Texas-Oklahoma 1.8 2.6
California 1.9 2.3

Wyoming/Montana/ 2.2
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Deep stratospheric ozone intrusions

in the new, high-resolution GFDL AM3 model
AM3/C180 simulation of a deep

stratospheric O, intrusion over California  Key model features:
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Subsidence of stratospheric ozone to the lower

troposphere of southern California (May 28, 2010)

Balloon AM3/C180 AM3/C48
Observations (~50 km) (~200 km)
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* High O; (>100 ppbv) just 2-4 km above southern California
« Affecting surface air quality in densely populated regions
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Advancing predictability with increase in
spatial resolution:

= Seasonal-to-decadal predictability

Courtesy:
T. Delworth and

G. Vecchi
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Decadal prediction: New efforts focused on multi-year/
decadal predictions: a mixed inrtial/boundary value problem
Sources of & Limrtations on climate predictability

Climatology
(what happens typically, including randomness)
need good observations
Evolution of initial conditions
(e.g., weather or El Nifio forecast)
— need good observations, models, initialization schemes

hours to a year

years to decade

Climate response to forcing

(e.g., CO,, aerosols, sun, volcanoes)
need good models and estimates of forcing

to centuries

Many decades



Approaches:

1. Use theory, observations (instrumental and paleo) to improve understanding of

decadal variability and its mechanisms
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Examples include:

*Collaboration between GFDL, NCAR and MIT on
decadal variability across a hierarchy of models

*Collaboration between GFDL, PMEL, Univ
Washington, Univ Miami on aspects of simulated and
observed Atlantic

Statistical estimate of predictability
Msadek et al., 2010
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High Resolution Model Development

Scientific Goals:

*Developing improved models (higher resolution, improved physics and
numerics, reduced bias) for studies of variability and predictability on intra-
seasonal to decadal time scales

*Explore impact of atmosphere and ocean on climate variability and
change using a high resolution coupled model

*New global coupled models: CM2.4, CM2.5, CM2.6, ...

CM2.1 100 Km 250 Km GFDL Running é._
CM2.3 100 Km 100 Km GFDL Running
CM2.4 10-25 Km 100 Km GFDL Running

CM2.5 10-25 Km 50 Km GFDL/GAEA Running é—

CM2.6 4-10 Km 50 Km GAEA Running




GFDL Response for Future CMIPs

Attempt to reduce CMIP commitment
— People
— Computer resources

Change model code to output variables in CMIP
names, units and conventions

— => Every analysis script in building needs changed
Have only 1 or 2 models go through IPCC process
Disentangle model development from IPCC cycle



The END

Thank you for your attention !




